

Author: Long Huynh – huynhquanglong@gmail.com Page | 41

2.2. Session

2.2.1. Introduction

StudioX provides IStudioXSession interface to obtain current user and tenant without using ASP.NET's

Session. IStudioXSession is also fully integrated and used by other structures in StudioX (setting system

and authorization system for instance)..

2.2.2. Injecting Session

IStudioXSession is generally property injected to needed classes unless it's not possible to work

without session informations. If we use property injection, we can use NullStudioXSession.Instance as

default value as shown below:

public class MyClass : ITransientDependency
{
 public IStudioXSession StudioXSession { get; set; }

 public MyClass()
 {
 StudioXSession = NullStudioXSession.Instance;
 }

 public void MyMethod()
 {
 var currentUserId = StudioXSession.UserId;
 }
}

Since authentication/authorization is an application layer task, it's adviced to use IStudioXSession in

application layer and upper layers (we don't use it in domain layer normally). ApplicationService,

StudioXController, StudioXApiController and some other base classes has StudioXSession already

injected. So, you can directly use StudioXSession property in an application service method for

instance.

2.2.3. Session Properties

StudioXSession defines a few key properties:

 UserId: Id of the current user or null if there is no current user. It can not be null if the

calling code is authorized.

Author: Long Huynh – huynhquanglong@gmail.com Page | 42

 TenantId: Id of the current tenant or null if there is no current tenant (in case of user has

not logged in or he is a host user).

 ImpersonatorUserId: Id of the impersonator user if current session is impersonated by

another user. It's null if this is not an impersonated login.

 ImpersonatorTenantId: Id of the impersonator user's tenant, if current session is

impersonated by another user. It's null if this is not an impersonated login.

 MultiTenancySide: It may be Host or Tenant.

UserId and TenantId is nullable. There is also non-nullable GetUserId() and GetTenantId() methods. If

you're sure there is a current user, you can call GetUserId(). If current user is null, this method throws

exception. GetTenantId() is also similar.

Impersonator properties are not common as other properties and generally used for audit logging

purposes.

ClaimsStudioXSession

ClaimsStudioXSession is the default implementation of IStudioXSession interface. It gets session

properties (except MultiTenancySide, it's calculated) from claims of current user's princical. For a

cookie based form authentication, it gets from cookies. Thus, it' well integrated to ASP.NET's

authentication mechanism.

2.2.4. Overriding Current Session Values

In some specific cases, you may need to change/override session values for a limited scope. In such

cases, you can use IAbpSession.Use method as shown below:

public class MyService
{
 private readonly IAbpSession session;

 public MyService(IAbpSession session) { this.session = session; }

 public void Test()
 {
 using (session.Use(42, null))
 {
 var tenantId = session.TenantId;
 var userId = session.UserId;

Author: Long Huynh – huynhquanglong@gmail.com Page | 43

 }
 }
}

Use method returns an IDisposable and it must be disposed. Once the return value is disposed, Session

values are automatically restored the to previous values.

Warning!

Always use it in a using block as shown above. Otherwise, you may get unexpected session values. You

can have nested Use blocks and they will work as you expect.

2.2.5. User Identifier

You can use .ToUserIdentifier() extension method to create a UserIdentifier object from

IStudioXSession. Since UserIdentifier is used in most API, this will simplify to create a UserIdentifier for

current user.

