

Author: Long Huynh – huynhquanglong@gmail.com Page | 14

1.3 Module System

1.3.1 Introduction

StudioX provides an infrastructure to build modules and compose them to create an application. A

module can depend on another module. Generally, an assembly is considered as a module. If you

created an application with more than one assembly, it's suggested to create a module definition for

each assembly.

Module system is currently focused on server side rather than client side.

1.3.2 Module Definition

A module is defined with a class that is derived from StudioXModule. Say that we're developing a Blog

module that can be used in different applications. Simplest module definition can be as shown below:

public class MyBlogApplicationModule : StudioXModule
{
 public override void Initialize()
 {
 IocManager.RegisterAssemblyByConvention(Assembly.GetExecutingAssembly());
 }
}

 Module definition class is responsible to register it's classes to dependency injection (can be done

conventionally as shown above) if needed. It can configure application and other modules, add new

features to the application and so on...

1.3.3 Lifecycle Methods

StudioX calls some specific methods of modules on application startup and shutdown. You can override

these methods to perform some specific tasks.

StudioX calls these methods ordered by dependecies. If module A depends on module B, module B is

initialized before module A. Exact order of startup methods: PreInitialize-B, PreInitialize-A, Initialize-B,

Initialize-A, PostInitialize-B and PostInitialize-A. This is true for all dependency graph. Shutdown

method is also similar but in reverse order.

Author: Long Huynh – huynhquanglong@gmail.com Page | 15

 PreInitialize: This method is called first when application starts. It's usual method to

configure the framework and other modules before they initialize. Also, you can write some

specific code here to run before dependency injection registrations. For example, if you

create a conventional registration class, you should register it here using

IocManager.AddConventionalRegisterer method.

 Initialize: It's the usual place where dependency injection registration should be done. It's

generally done using IocManager.RegisterAssemblyByConvention method. If you want to

define custom dependency registration, see dependency injection documentation.

 PostInitialize: This method is called lastly in startup progress. It's safe to resolve a

dependency here.

 Shutdown: This method is called when the application shuts down.

1.3.4 Module Dependencies

A module can be dependent to another. It's required to explicitly declare dependencies using

DependsOn attribute like below:

[DependsOn(typeof(MyBlogCoreModule))]
public class MyBlogApplicationModule : StudioXModule
{
 public override void Initialize(){}
}

Thus, we declare to StudioX that MyBlogApplicationModule depends on MyBlogCoreModule and the

MyBlogCoreModule should be initialized before the MyBlogApplicationModule. StudioX can resolve

dependencies recursively beginning from the startup module and initialize them accordingly. Startup

module initialized as the last module.

1.3.5 PlugIn Modules

While modules are investigated beginning from startup module and going to dependencies, StudioX

can also load modules dynamically. StudioXBootstrapper class defines PlugInSources property which

can be used to add sources to dynamically load plugin modules. A plugin source can be any class

Author: Long Huynh – huynhquanglong@gmail.com Page | 16

implements IPlugInSource interface. PlugInFolderSource class implements it to get plugin modules

from assemblies located in a folder.

ASP.NET Core: StudioX ASP.NET Core module defines options in AddStudioX extension method to add

plugin sources in Startup class:

services.AddStudioX<MyStartupModule>(options =>
{
 options.PlugInSources.Add(new FolderPlugInSource(@"C:\MyPlugIns"));
});

 We could use AddFolder extension method for a simpler syntax:

services.AddStudioX<MyStartupModule>(options => {
 options.PlugInSources.AddFolder(@"C:\MyPlugIns");
});

 ASP.NET MVC, Web API: For classic ASP.NET MVC applications, we can add plugin folders by

overriding Application_Start in global.asax as shown below:

public class MvcApplication : StudioXWebApplication<MyStartupModule>
{
 protected override void Application_Start(object sender, EventArgs e)
 {
 StudioXBootstrapper.PlugInSources.AddFolder(@"C:\MyPlugIns");
 //...
 base.Application_Start(sender, e);
 }
}

 Controllers in PlugIns: If your modules include MVC or Web API Controllers, ASP.NET can not

investigate your controllers. To overcome this issue, you can change global.asax file like below:

[assembly: PreApplicationStartMethod(typeof(PreStarter), "Start")]
namespace MyDemoApp.Web
{
 public class MvcApplication : StudioXWebApplication<MyStartupModule>{ }

 public static class PreStarter
 {
 public static void Start()
 {
 //...
 MvcApplication.StudioXBootstrapper.PlugInSources.AddFolder(@"C:\MyPlugIns\");
 MvcApplication.StudioXBootstrapper.PlugInSources.AddToBuildManager();

Author: Long Huynh – huynhquanglong@gmail.com Page | 17

 }
 }

}

1.3.6 Additional Assemblies

Default implementations for IAssemblyFinder and ITypeFinder (which is used by StudioX to investigate

specific classes in the application) only finds module assemblies and types in those assemblies. We can

override GetAdditionalAssemblies method in our module to include additional assemblies.

1.3.7 Custom Module Methods

Your modules also can have custom methods those can be used by other modules depend on this

module. Assume that MyModule2 depends on MyModule1 and wants to call a method of MyModule1

in PreInitialize.

public class MyModule1 : StudioXModule
{
 public override void Initialize()
 {
 IocManager.RegisterAssemblyByConvention(Assembly.GetExecutingAssembly());
 }

 public void MyModuleMethod1()
 {
 //this is a custom method of this module
 }
}

[DependsOn(typeof(MyModule1))]
public class MyModule2 : StudioXModule
{
 private readonly MyModule1 myModule1;

 public MyModule2(MyModule1 myModule1)
 {
 this.myModule1 = myModule1;
 }

 public override void PreInitialize()
 {
 //Call MyModule1's method
 this.myModule1.MyModuleMethod1();
 }

 public override void Initialize()
 {

Author: Long Huynh – huynhquanglong@gmail.com Page | 18

 IocManager.RegisterAssemblyByConvention(Assembly.GetExecutingAssembly());

 }

}

 Here, we constructor-injected MyModule1 to MyModule2, so MyModule2 can call MyModule1's

custom method. This is only possible if Module2 depends on Module1.

1.3.8 Module Configuration

While custom module methods can be used to configure modules, we suggest to use startup

configuration system to define and set configuration for modules.

1.3.9 Module Lifetime

Module classes are automatically registered as singleton.

