

Author: Long Huynh – huynhquanglong@gmail.com Page | 6

1. Overall

1.1 Introduction

1.1.1 Introduction

We are implementing common and similar structures: Authorization, Validation, Exception Handling,

Logging, Localization, Database Connection Management, Setting Management, Audit Logging are

some of these common structures. Also, we are building architectural structures and best practices

like Layered and Modular Architecture, Domain Driven Design, Dependency Injection and so on. And

trying to develop applications based on some conventions.

1.1.2 A Quick Sample

Let's investigate a simple class to see StudioX's Framework benefits:

Author: Long Huynh – huynhquanglong@gmail.com Page | 7

Here, we see a sample Application Service method. An application service, in DDD, is directly used by

presentation layer to perform use cases of the application. We can think that Update method is called

by javascript via AJAX. Let's see StudioX's some benefits here:

 Dependency Injection: StudioX uses and provides a strong and conventional DI infrastructure.

Since this class is an application service, it's conventionally registered to DI container as

transient (created per request). It can simply inject all dependencies (as IRepository<User,

long> in this sample).

 Repository: StudioX can create a default repository for each entity (as IRepository<User, long>

in this example). Default repository has many useful methods as Get used in this example. We

can easily extend default repository upon our needs. Repositories abstracts DBMS, ORMs and

simplifies data access logic.

 Authorization: StudioX can check permissions. It prevents access to Update method if current

user has no "updating user" permission or not logged in. It simplifies authorization using

declarative attributes but also has additional ways of authorization.

 Validation: StudioX automatically checks if input is null. It also validates all properties of an

input based on standard data annotation attributes and custom validation rules. If request is

not valid, it throws a proper validation exception.

 Audit Logging: User, browser, IP address, calling service, method, parameters, calling time,

execution duration and some other informations are automatically saved for each request

based on conventions and configurations.

 Unit Of Work: In StudioX Framework, each application service method is assumed as a unit of

work as default. It automatically creates a connection and begins a transaction at the beggining

of the method. If the method successfully completed without exception, then the transaction is

commited and connection is disposed. Even this method uses different repositories or

methods, all of them will be atomic (transactional). And all changes on entities are

automatically saved when transaction is commited. Thus, we don't even need to call

repository.UpdateAsync(user) method as shown here.

 Exception Handling: We almost never handle exceptions in StudioX in a web application. All

exceptions are automatically handled by default. If an exception occurs, StudioX automatically

Author: Long Huynh – huynhquanglong@gmail.com Page | 8

logs it and returns a proper result to the client. For example, if this is an AJAX request, the it

returns a JSON to client indicates that an error occurred. If hides actual exception from client

unless the exception is a UserFriendlyException as used in this sample. It also understands and

handles errors on client side and show appropriate messages to users.

 Logging: As you see, we can write logs using the Logger object defined in base class. Log4Net is

used as default but it's changeable or configurable.

 Localization: Notice that we used L method while throwing exception. Thus, it's automatically

localized based on current user's culture. Surely, we're defining

CouldNotFoundTheTaskMessage in somewhere (see localization document for more).

 Auto Mapping: In the last line, we're using StudioX's MapTo extension method to map input

properties to entity properties. It uses AutoMapper library to perform mapping. Thus, we can

easily map properties from one object to another based on naming conventions.

 Dynamic Web API Layer: TaskAppService is a simple class actually (even no need to deliver

from ApplicationService). We generally write a wrapper Web API Controller to expose methods

to javascript clients. StudioX automatically does that on runtime. Thus, we can use application

service methods directly from clients.

 Dynamic Javascript AJAX Proxy: StudioX creates javascript proxy methods those make calling

application service methods just as simple as calling javascript methods on the client.

We can see benefit of StudioX in such a simple class. All these tasks normally take significiant time, but

all they are automatically handled by StudioX.

1.1.3 What Else

Beside this simple example, StudioX provides a strong infrastructure and application model. Here,

some other features of StudioX:

 Modularity: Provides a strong infrastructure to build reusable modules.

 Data Filters: Provides automatic data filtering to implement some patterns like soft-delete and

multi-tenancy.

 Multi Tenancy: It fully supports multi-tenancy, including single database or database per tenant

architectures.

Author: Long Huynh – huynhquanglong@gmail.com Page | 9

 Setting Management: Provides a strong infrastructure to get/change application, tenant and

user level settings.

 Unit & Integration Testing: It's built testability in mind. Also provides base classes to simplify

unit & integration tests.

For all features, see documentation.

